Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Rep ; 11(1): 22640, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1528030

ABSTRACT

Scaling up of diagnostic capacity is needed to mitigate the global pandemic of SARS-CoV2. However, there are challenges including shortage of sample collection swabs and transport medium. Saliva has been recommended as a simple, low-cost, non-invasive option. However, data from different populations and settings are limited. Here, we showed that saliva could be a good alternative sample to diagnose COVID-19 patients. Pair of NPS-saliva samples was collected from 152 symptomatic; confirmed COVID-19 patients, and compared their positivity rate, viral load, and duration of viral shedding. From 152 patients, 80 (52.63%) tested positive and 72 (47.37%) were negative for SARSA-CoV2 in NPS sample. In saliva, 129 (92.14%) were tested positive and 11 (7.86%) were negative on the day of admission to hospital. The overall percent agreement of RT-PCR result of Saliva to NPS was 70% (196/280). A comparison of viral load from 72 NPS-saliva pair samples on day of admission shows saliva contains significantly higher viral load (P < 0.001). In conclusion, saliva has higher yield in detecting SARS-CoV2, and COVID-19 patients show higher viral load and prolonged period of viral shedding in saliva. Therefore, we recommend saliva as a better alternative sample to NPS to diagnose COVID-19 patients.


Subject(s)
COVID-19/diagnosis , Nasopharynx/virology , SARS-CoV-2/genetics , Saliva/virology , Specimen Handling/methods , COVID-19 Nucleic Acid Testing , Hospitalization , Humans , Pandemics , RNA, Viral , Viral Load , Virus Shedding
2.
Microbiol Resour Announc ; 10(38): e0072121, 2021 Sep 23.
Article in English | MEDLINE | ID: covidwho-1434905

ABSTRACT

Three complete severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from Ethiopian patients were compared with deposited global genomes. Two genomes belonged to genetic group 20A/B.1/GH, and the other belonged to genetic group 20A/B.1.480/GH. Enhancing genomic capacity is important to investigate the transmission and to monitor the evolution and mutational patterns of SARS-CoV-2 in this country.

3.
PLoS One ; 16(2): e0247767, 2021.
Article in English | MEDLINE | ID: covidwho-1105822

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has revealed the global public health importance of robust diagnostic testing. To overcome the challenge of nucleic acid (NA) extraction and testing kit availability, an efficient method is urgently needed. OBJECTIVES: To establish an efficient, time and resource-saving and cost-effective methods, and to propose an ad hoc pooling approach for mass screening of SARS-CoV-2. METHODS: We evaluated pooling approach on both direct clinical and NA samples. The standard reverse transcriptase polymerase chain reaction (RT-PCR) test of the SARS CoV-2 was employed targeting the nucleocapsid (N) and open reading frame (ORF1ab) genomic region of the virus. The experimental pools were created using SARS CoV-2 positive clinical samples and extracted RNA spiked with up to 9 negative samples. For the direct clinical samples viral NA was extracted from each pool to a final extraction volume of 200µL, and subsequently both samples tested using the SARS CoV-2 RT-PCR assay. RESULTS: We found that a single positive sample can be amplified and detected in pools of up to 7 samples depending on the cycle threshold (Ct) value of the original sample, corresponding to high, and low SARS CoV-2 viral copies per reaction. However, to minimize false negativity of the assay with pooling strategies and with unknown false negativity rate of the assay under validation, we recommend pooling of 4/5 in 1 using the standard protocols of the assay, reagents and equipment. The predictive algorithm indicated a pooling ratio of 5 in 1 was expected to retain accuracy of the test irrespective of the Ct value samples spiked, and result in a 137% increase in testing efficiency. CONCLUSIONS: The approaches showed its concept in easily customized and resource-saving manner and would allow expanding of current screening capacities and enable the expansion of detection in the community. We recommend clinical sample pooling of 4 or 5 in 1. However, we don't advise pooling of clinical samples when disease prevalence is greater than 7%; particularly when sample size is large.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Algorithms , COVID-19/virology , COVID-19 Nucleic Acid Testing/economics , Humans , Mass Screening/economics , Mass Screening/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Specimen Handling/economics , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL